Summary of information
PROJECT
Calixarenes

Wiki_Logo

Upload 28-01-2011 15:44 (Day-Month-Year, Paris time)
Update 27-09-2011 13:25 (Day-Month-Year, Paris time)



Information about the Author (who submitted the project in R.E.DD.B.)

Firstname Enguerran

Lastname Vanquelef

Institute UFR de pharmacie, UPJV

City Amiens

Country FRANCE


General information about the Project

Molecule keywords

calixarene hydrophobic cage aromatic oligomer macrocycle organic ligands


Abstract

Introduction
Calixarenes are macrocycles, which feature a hydrophobic cavity. They are widely used for their ability to complex small molecules with potential biological applications. An extensive variety of structurally related molecules derived from calixarenes has been synthesized. This includes calix[n]arenes with functionalized ligands.[1] Since topological fragments required for building calix[n]arenes with functionalized ligands are not available in the Cornell et al. force field [2] (and in its successive modifications as the additive Amber99SB force field) we developed a new Force Field Topology DataBase (FFTopDB) compatible with a selection of organic functions. The calix[n]arenes studied in this work include oligomers of 2,4-dimethylaniline, 2,4-dimethylphenol, 2,4-dimethylthiophenol (with the corresponding anions), substituted or not at the C4 position by different alkyl groups (methyl, propyl, isopropyl, butyl, tertiobutyl, 1,1,2,2-tetramethylpropyl and allyl) and via the heteroatom at the C1 position by various functionalized aliphatic ligands (with alcohol, ketone, ether, amine, amide, thiol, thioether, ester, and carboxylic acid organic functions). A calix[n]arene aromatic unit is connected via the C7 carbon to the C6 aromatic carbon belonging to the next (n + 1) aromatic unit. 110 molecules were involved in charge derivation and the list of molecules consists of 12 molecules composing the calix[n]arene aromatic rings, three NH-methyl-, O-methyl- and S-methyl-based families of 26 ligands connected to the heteroatom at the C1 position and 8 alkyl derivatives connected at the C4 position (see Scheme a).

Computational details
Theory levels involved in quantum chemistry calculations were selected to be in agreement with these used in RESP charge derivation for the Amber99SB force field. The different building blocks used here were optimized using the HF/6-31G** theory level and the Firefly program (version 7.1.G).[3] The lowest energy minimum for each aromatic building block was included in charge derivation. For the different alkyl molecules and functionalized ligands, one or two energy minima were selected after conformational search. A lowest minimum was considered only if no canonical intra-molecular hydrogen bond [donor (D)-acceptor (A) distance lower than 3.20 Å and the D-H...A angle between 120-180°] was observed in a structure. Molecular electrostatic potential (MEP) computation involved the Connolly surface algorithm and the HF/6-31G* theory level implemented in the Firefly program. For each aromatic moiety four molecular orientations and for each alkyl molecule and ligand, two molecular orientations based on the rigid-body reorientation algorithm implemented in R.E.D. program were involved in MEP computation assuring the reproducibility of charge values.[4] The molecular fragments required for MD simulations were constructed by setting intra-molecular charge constraints within the aromatic moieties and inter-molecular charge constraints between the aromatic moieties and the alkyl groups or ligands during the charge fitting step (see Scheme a). RESP charge fitting was carried out using a standalone version of the RESP program and following a two-stage fitting procedure with a hyperbolic restraint function, using a weighting factor of 0.0005 and 0.001 for the two stages, respectively.[5] A Relative Root Mean Square (RRMS) value of 0.067 between the MEP calculated by quantum chemistry and that generated using the derived charge values was obtained for the last charge fitting step. A RRMS values of 0.068 was also obtained in the absence of intra- and inter-molecular charge constraints. The relative small RRMS values as well as the small difference of RRMS between the charge fitting steps carried out without and with intra- and inter-molecular charge constraints demonstrate the accuracy of the fitting step performed on 310 structures and the weak effect of the constraints used.


Scheme 1
Charge derivation involving multiple orientations, multiple conformations and multiple molecules (i. e. 310 structures) and force field library building for calix[n]arene-based systems automatically have been carried out using the R.E.D. IV program (version June 2010) available in R.E.D. Server. a) Description of the different molecules involved in RESP charge derivation and FFTopDB building; green boxes: intra-molecular charge constraints used during the charge fitting step allowing the construction of the calix[n]arene aromatic counter parts; blue boxes: inter-molecular charge constraints between the C4 position of each aromatic ring and selected groups belonging to alkyl molecules; red boxes: inter-molecular charge constraints between the heteroatom group (-NH2, -OH or -SH) at the C1 position of each aromatic ring and the NH-methyl, O-methyl or S-methyl group of each functionalized ligands studied in this work. b-c) building of functionalized calix[n]arenes originating from the CSD database using the FFTopDB generated.

Validation of the FFTopDB
The new FFTopDB has been validated based on 10 nsec molecular dynamics (MD) simulations using structures originating from the Cambridge Structural Database (CSD). The selected structures are referenced as ASIWUU [6a], KEVXUE [6b] and DAKSEN10 [6c] and are presented in scheme b. Averaged heavy atom Root Mean square Deviation (RMSD) values obtained between MD snapshots and CSD structures were computed for each model and was found to be 0.33, 1.08 and 1.89 Å for ASIWUU, KEVXUE and DAKSEN10, respectively. The flexibility of the ligands explains the relative high RMSD values obtained for KEVXUE and DAKSEN10. The RMSD values confirm the validity of the FFTopDB reported here.

Conclusion and new perpectives
Schemes b, c provide examples of calixarenes, which can be studied by MD simulations [calix[4]arenes and calix[n]arenes (with cone, partial cone and alternate conformations)]. A LEaP script is available providing examples for building initial MD structures for substituted calix[n]arenes. Finally, by directly defining new intra-molecular charge constraints set to the averaged 0.1494, 0.1768 and 0.1163 values obtained in this project for the methyl groups of the NH-, O- and S-families of ligands, respectively, a potentially infinite number of new fragments (R-NH, R-O and R-S) can be added to the present list and could constitute add-ons to this present R.E.DD.B. project.

[1] Gutsche, C. David, Calixarenes, Cambridge, Royal Society of Chemistry, 1989.
[2] Cornell et al. J. Am. Chem. Soc. 1995, 117, 5179–5197.
[3] Nemukhin et al. Moscow Univ. Chem. Bull. 2004, 45, 75–102, and here.
[4] Information about the atoms involved in the rigid-body re-orientation algorithm is available in the PDB files of this R.E.DD.B. project (see the "REMARK REORIENT" keyword).
[5] Bayly et al. J. Phys. Chem. 1993, 97, 10269–10280, and here.
[6a] Asfari et al. Org. Biomol. Chem. 2005, 2, 387–396. [6b] Grootenhuis et al. J. Am. Chem. Soc. 1990, 112, 4165–4176. [6c] Arnaud-Neu et al. J. Am. Chem. Soc. 1989, 111, 8681–8691.

Publication YES      

Author(s) E. Vanquelef, S. Simon, G. Marquant, E. Garcia, G. Klimerak, J. C. Delepine, P. Cieplak and F.-Y. Dupradeau

Journal Nucl. Acids Res. (Web server issue)

Year 2011

Volume 39

Page(s) W511-W517


"Whole molecule" or "Molecule fragment" type project MOLECULE FRAGMENT

Interface R.E.D. used ? YES


Charge derivation procedure

Number of Tripos mol2 file(s) provided by the author(s) 113

Contain charge values & information about molecular topology

No Name Download Wikipedia 3D Display 1 3D Display 2
1 Fragment N01 Wiki_Logo Jmol_Logo JSmol_Logo
2 Fragment N02 Wiki_Logo Jmol_Logo JSmol_Logo
3 Fragment N03 Wiki_Logo Jmol_Logo JSmol_Logo
4 Fragment N04 Wiki_Logo Jmol_Logo JSmol_Logo
5 Fragment N05 Wiki_Logo Jmol_Logo JSmol_Logo
6 Fragment N06 Wiki_Logo Jmol_Logo JSmol_Logo
7 Fragment N07 Wiki_Logo Jmol_Logo JSmol_Logo
8 Fragment N08 Wiki_Logo Jmol_Logo JSmol_Logo
9 Fragment N09 Wiki_Logo Jmol_Logo JSmol_Logo
10 Fragment N10 Wiki_Logo Jmol_Logo JSmol_Logo
11 Fragment N11 Wiki_Logo Jmol_Logo JSmol_Logo
12 Fragment F11 Wiki_Logo Jmol_Logo JSmol_Logo
13 Fragment N12 Wiki_Logo Jmol_Logo JSmol_Logo
14 Fragment F12 Wiki_Logo Jmol_Logo JSmol_Logo
15 Fragment N13 Wiki_Logo Jmol_Logo JSmol_Logo
16 Fragment N14 Wiki_Logo Jmol_Logo JSmol_Logo
17 Fragment N15 Wiki_Logo Jmol_Logo JSmol_Logo
18 Fragment N16 Wiki_Logo Jmol_Logo JSmol_Logo
19 Fragment N17 Wiki_Logo Jmol_Logo JSmol_Logo
20 Fragment N18 Wiki_Logo Jmol_Logo JSmol_Logo
21 Fragment N19 Wiki_Logo Jmol_Logo JSmol_Logo
22 Fragment N20 Wiki_Logo Jmol_Logo JSmol_Logo
23 Fragment N21 Wiki_Logo Jmol_Logo JSmol_Logo
24 Fragment N22 Wiki_Logo Jmol_Logo JSmol_Logo
25 Fragment N23 Wiki_Logo Jmol_Logo JSmol_Logo
26 Fragment F23 Wiki_Logo Jmol_Logo JSmol_Logo
27 Fragment N24 Wiki_Logo Jmol_Logo JSmol_Logo
28 Fragment F24 Wiki_Logo Jmol_Logo JSmol_Logo
29 Fragment N25 Wiki_Logo Jmol_Logo JSmol_Logo
30 Fragment N26 Wiki_Logo Jmol_Logo JSmol_Logo
31 Fragment O01 Wiki_Logo Jmol_Logo JSmol_Logo
32 Fragment O02 Wiki_Logo Jmol_Logo JSmol_Logo
33 Fragment O03 Wiki_Logo Jmol_Logo JSmol_Logo
34 Fragment O04 Wiki_Logo Jmol_Logo JSmol_Logo
35 Fragment O05 Wiki_Logo Jmol_Logo JSmol_Logo
36 Fragment O06 Wiki_Logo Jmol_Logo JSmol_Logo
37 Fragment O07 Wiki_Logo Jmol_Logo JSmol_Logo
38 Fragment O08 Wiki_Logo Jmol_Logo JSmol_Logo
39 Fragment O09 Wiki_Logo Jmol_Logo JSmol_Logo
40 Fragment O10 Wiki_Logo Jmol_Logo JSmol_Logo
41 Fragment O11 Wiki_Logo Jmol_Logo JSmol_Logo
42 Fragment G11 Wiki_Logo Jmol_Logo JSmol_Logo
43 Fragment O12 Wiki_Logo Jmol_Logo JSmol_Logo
44 Fragment G12 Wiki_Logo Jmol_Logo JSmol_Logo
45 Fragment O13 Wiki_Logo Jmol_Logo JSmol_Logo
46 Fragment O14 Wiki_Logo Jmol_Logo JSmol_Logo
47 Fragment O15 Wiki_Logo Jmol_Logo JSmol_Logo
48 Fragment O16 Wiki_Logo Jmol_Logo JSmol_Logo
49 Fragment O17 Wiki_Logo Jmol_Logo JSmol_Logo
50 Fragment O18 Wiki_Logo Jmol_Logo JSmol_Logo
51 Fragment O19 Wiki_Logo Jmol_Logo JSmol_Logo
52 Fragment O20 Wiki_Logo Jmol_Logo JSmol_Logo
53 Fragment O21 Wiki_Logo Jmol_Logo JSmol_Logo
54 Fragment O22 Wiki_Logo Jmol_Logo JSmol_Logo
55 Fragment O23 Wiki_Logo Jmol_Logo JSmol_Logo
56 Fragment G23 Wiki_Logo Jmol_Logo JSmol_Logo
57 Fragment O24 Wiki_Logo Jmol_Logo JSmol_Logo
58 Fragment G24 Wiki_Logo Jmol_Logo JSmol_Logo
59 Fragment O25 Wiki_Logo Jmol_Logo JSmol_Logo
60 Fragment O26 Wiki_Logo Jmol_Logo JSmol_Logo
61 Fragment S01 Wiki_Logo Jmol_Logo JSmol_Logo
62 Fragment S02 Wiki_Logo Jmol_Logo JSmol_Logo
63 Fragment S03 Wiki_Logo Jmol_Logo JSmol_Logo
64 Fragment S04 Wiki_Logo Jmol_Logo JSmol_Logo
65 Fragment S05 Wiki_Logo Jmol_Logo JSmol_Logo
66 Fragment S06 Wiki_Logo Jmol_Logo JSmol_Logo
67 Fragment S07 Wiki_Logo Jmol_Logo JSmol_Logo
68 Fragment S08 Wiki_Logo Jmol_Logo JSmol_Logo
69 Fragment S09 Wiki_Logo Jmol_Logo JSmol_Logo
70 Fragment S10 Wiki_Logo Jmol_Logo JSmol_Logo
71 Fragment S11 Wiki_Logo Jmol_Logo JSmol_Logo
72 Fragment H11 Wiki_Logo Jmol_Logo JSmol_Logo
73 Fragment S12 Wiki_Logo Jmol_Logo JSmol_Logo
74 Fragment H12 Wiki_Logo Jmol_Logo JSmol_Logo
75 Fragment S13 Wiki_Logo Jmol_Logo JSmol_Logo
76 Fragment S14 Wiki_Logo Jmol_Logo JSmol_Logo
77 Fragment S15 Wiki_Logo Jmol_Logo JSmol_Logo
78 Fragment S16 Wiki_Logo Jmol_Logo JSmol_Logo
79 Fragment S17 Wiki_Logo Jmol_Logo JSmol_Logo
80 Fragment S18 Wiki_Logo Jmol_Logo JSmol_Logo
81 Fragment S19 Wiki_Logo Jmol_Logo JSmol_Logo
82 Fragment S20 Wiki_Logo Jmol_Logo JSmol_Logo
83 Fragment S21 Wiki_Logo Jmol_Logo JSmol_Logo
84 Fragment S22 Wiki_Logo Jmol_Logo JSmol_Logo
85 Fragment S23 Wiki_Logo Jmol_Logo JSmol_Logo
86 Fragment H23 Wiki_Logo Jmol_Logo JSmol_Logo
87 Fragment S24 Wiki_Logo Jmol_Logo JSmol_Logo
88 Fragment H24 Wiki_Logo Jmol_Logo JSmol_Logo
89 Fragment S25 Wiki_Logo Jmol_Logo JSmol_Logo
90 Fragment S26 Wiki_Logo Jmol_Logo JSmol_Logo
91 Fragment PH Wiki_Logo Jmol_Logo JSmol_Logo
92 Fragment PM Wiki_Logo Jmol_Logo JSmol_Logo
93 Fragment PI Wiki_Logo Jmol_Logo JSmol_Logo
94 Fragment PN Wiki_Logo Jmol_Logo JSmol_Logo
95 Fragment P03 Wiki_Logo Jmol_Logo JSmol_Logo
96 Fragment P04 Wiki_Logo Jmol_Logo JSmol_Logo
97 Fragment P05 Wiki_Logo Jmol_Logo JSmol_Logo
98 Fragment P06 Wiki_Logo Jmol_Logo JSmol_Logo
99 Fragment KN1 Wiki_Logo Jmol_Logo JSmol_Logo
100 Fragment KN3 Wiki_Logo Jmol_Logo JSmol_Logo
101 Fragment QN1 Wiki_Logo Jmol_Logo JSmol_Logo
102 Fragment KO1 Wiki_Logo Jmol_Logo JSmol_Logo
103 Fragment KO3 Wiki_Logo Jmol_Logo JSmol_Logo
104 Fragment QO1 Wiki_Logo Jmol_Logo JSmol_Logo
105 Fragment KS1 Wiki_Logo Jmol_Logo JSmol_Logo
106 Fragment KS3 Wiki_Logo Jmol_Logo JSmol_Logo
107 Fragment QS1 Wiki_Logo Jmol_Logo JSmol_Logo
108 Molecule KNE Wiki_Logo Jmol_Logo JSmol_Logo
109 Molecule QNE Wiki_Logo Jmol_Logo JSmol_Logo
110 Molecule KOE Wiki_Logo Jmol_Logo JSmol_Logo
111 Molecule QOE Wiki_Logo Jmol_Logo JSmol_Logo
112 Molecule KSE Wiki_Logo Jmol_Logo JSmol_Logo
113 Molecule QSE Wiki_Logo Jmol_Logo JSmol_Logo


Number of molecule(s) used in the charge derivation procedure 110

File(s) provided to the PDB format

No Molecule name Conformation No Reorientation procedure Mol. orientation No Download Wikipedia
1 (methylamino)methanol 1 Rigid Body Reorient Algo 2 Wiki_Logo
2 1-methoxy-N-methylmethanamine 1 Rigid Body Reorient Algo 2 Wiki_Logo
3 1-(2-methylaminomethoxy)-2,2-dimethylpropane 1 Rigid Body Reorient Algo 2 Wiki_Logo
4 N-methylmethanediamine 1 Rigid Body Reorient Algo 2 Wiki_Logo
5 N,N'-dimethylmethanediamine 1 Rigid Body Reorient Algo 2 Wiki_Logo
6 (methylamino)methanthiol 1 Rigid Body Reorient Algo 2 Wiki_Logo
7 N-methyl-(methylsulfanyl)methanamine 1 Rigid Body Reorient Algo 2 Wiki_Logo
8 N-methylglycine 1 Rigid Body Reorient Algo 2 Wiki_Logo
9 methyl N-methylglycinate 1 Rigid Body Reorient Algo 2 Wiki_Logo
10 ethyl N-methylglycinate 1 Rigid Body Reorient Algo 2 Wiki_Logo
11 N,N'-dimethylglycinamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
12 N,N'-dimethylglycinamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
13 N-[(methylamino)methyl]acetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
14 N-[(methylamino)methyl]acetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
15 2-(methylamino)ethanol 2 Rigid Body Reorient Algo 2 Wiki_Logo
16 2-methoxy-N-methylethanamine 2 Rigid Body Reorient Algo 2 Wiki_Logo
17 2-(2,2-dimethylpropoxy)-N-methylethanamine 2 Rigid Body Reorient Algo 2 Wiki_Logo
18 N-methylethane-1,2-diamine 2 Rigid Body Reorient Algo 2 Wiki_Logo
19 N,N'-dimethylethane-1,2-diamine 2 Rigid Body Reorient Algo 2 Wiki_Logo
20 2-(methylamino)ethanthiol 2 Rigid Body Reorient Algo 2 Wiki_Logo
21 N-methyl-2-(methylsulfanyl)ethanamine 2 Rigid Body Reorient Algo 2 Wiki_Logo
22 N-methyl-b-alanine 1 Rigid Body Reorient Algo 2 Wiki_Logo
23 methyl N-methyl-b-alaninate 1 Rigid Body Reorient Algo 2 Wiki_Logo
24 ethyl 3-(methylamino)propanoate 1 Rigid Body Reorient Algo 2 Wiki_Logo
25 N,N'-dimethyl-b-alaninamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
26 N,N'-dimethyl-b-alaninamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
27 N-[2-(methylamino)ethyl]acetamide 2 Rigid Body Reorient Algo 2 Wiki_Logo
28 N-[2-(methylamino)ethyl]acetamide 2 Rigid Body Reorient Algo 2 Wiki_Logo
29 N,N-dimethylamine 1 Rigid Body Reorient Algo 2 Wiki_Logo
30 1-(methylamino)acetone 1 Rigid Body Reorient Algo 2 Wiki_Logo
31 methoxymethanol 1 Rigid Body Reorient Algo 2 Wiki_Logo
32 dimethoxymethane 1 Rigid Body Reorient Algo 2 Wiki_Logo
33 1-(2-methoxymethoxy)-2,2-dimethylpropane 1 Rigid Body Reorient Algo 2 Wiki_Logo
34 1-methoxymethanamine 1 Rigid Body Reorient Algo 2 Wiki_Logo
35 1-methoxy-N-methylmethanamine 1 Rigid Body Reorient Algo 2 Wiki_Logo
36 methoxymethanthiol 1 Rigid Body Reorient Algo 2 Wiki_Logo
37 methoxy(methylsulfanyl)methane 1 Rigid Body Reorient Algo 2 Wiki_Logo
38 methoxyacetic acid 1 Rigid Body Reorient Algo 2 Wiki_Logo
39 methyl methoxyacetate 1 Rigid Body Reorient Algo 2 Wiki_Logo
40 ethyl methoxyacetate 1 Rigid Body Reorient Algo 2 Wiki_Logo
41 2-methoxy-N-methylacetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
42 2-methoxy-N-methylacetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
43 N-(methoxymethyl)acetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
44 N-(methoxymethyl)acetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
45 2-methoxyethanol 2 Rigid Body Reorient Algo 2 Wiki_Logo
46 1,2-dimethoxyethane 2 Rigid Body Reorient Algo 2 Wiki_Logo
47 1-(2-methoxyethoxy)-2,2-dimethylpropane 2 Rigid Body Reorient Algo 2 Wiki_Logo
48 2-methoxyethanamine 2 Rigid Body Reorient Algo 2 Wiki_Logo
49 2-methoxy-N-methylethanamine 2 Rigid Body Reorient Algo 2 Wiki_Logo
50 2-methoxyethanthiol 2 Rigid Body Reorient Algo 2 Wiki_Logo
51 1-methoxy-2-(methylsulfanyl)ethane 2 Rigid Body Reorient Algo 2 Wiki_Logo
52 3-methoxypropanoic acid 2 Rigid Body Reorient Algo 2 Wiki_Logo
53 methyl 3-methoxypropionate 2 Rigid Body Reorient Algo 2 Wiki_Logo
54 ethyl 1-methoxypropanoate 1 Rigid Body Reorient Algo 2 Wiki_Logo
55 3-methoxy-N-methylpropanamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
56 3-methoxy-N-methylpropanamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
57 N-(2-methoxyethyl)acetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
58 N-(2-methoxyethyl)acetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
59 methoxymethane 1 Rigid Body Reorient Algo 2 Wiki_Logo
60 1-methoxyacetone 1 Rigid Body Reorient Algo 2 Wiki_Logo
61 (methylsulfanyl)methanol 1 Rigid Body Reorient Algo 2 Wiki_Logo
62 methoxy(methylsulfanyl)methane 1 Rigid Body Reorient Algo 2 Wiki_Logo
63 1-[2-(methylsulfanyl)methoxy]-2,2-dimethylpropane 1 Rigid Body Reorient Algo 2 Wiki_Logo
64 1-(methylsulfanyl)methanamine 1 Rigid Body Reorient Algo 2 Wiki_Logo
65 1-(methylsulfanyl)-N-methylmethanamine 1 Rigid Body Reorient Algo 2 Wiki_Logo
66 (methylsulfanyl)methanthiol 1 Rigid Body Reorient Algo 2 Wiki_Logo
67 bis(methylsulfanyl)methane 1 Rigid Body Reorient Algo 2 Wiki_Logo
68 (methylsulfanyl)acetic acid 1 Rigid Body Reorient Algo 2 Wiki_Logo
69 methyl (methylsulfanyl)acetate 1 Rigid Body Reorient Algo 2 Wiki_Logo
70 ethyl (methylsulfanyl)acetate 2 Rigid Body Reorient Algo 2 Wiki_Logo
71 2-(methylsulfanyl)-N-methylacetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
72 2-(methylsulfanyl)-N-methylacetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
73 N-[(methylsulfanyl)methyl]acetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
74 N-[(methylsulfanyl)methyl]acetamide 1 Rigid Body Reorient Algo 2 Wiki_Logo
75 2-(methylsulfanyl)ethanol 2 Rigid Body Reorient Algo 2 Wiki_Logo
76 1-methoxy-2-(methylsulfanyl)ethane 2 Rigid Body Reorient Algo 2 Wiki_Logo
77 1-[2-(methylsulfanyl)ethoxy]-2,2-dimethylpropane 2 Rigid Body Reorient Algo 2 Wiki_Logo
78 2-(methylsulfanyl)ethanamine 2 Rigid Body Reorient Algo 2 Wiki_Logo
79 2-(methylsulfanyl)-N-methylethanamine 2 Rigid Body Reorient Algo 2 Wiki_Logo
80 2-(methylsulfanyl)ethanthiol 2 Rigid Body Reorient Algo 2 Wiki_Logo
81 1,2-bis(methylsulfanyl)ethane 2 Rigid Body Reorient Algo 2 Wiki_Logo
82 3-(methylsulfanyl)propanoic acid 2 Rigid Body Reorient Algo 2 Wiki_Logo
83 methyl 3-(methylsulfanyl)propanoate 2 Rigid Body Reorient Algo 2 Wiki_Logo
84 ethyl 1-(methylsulfanyl)propanoate 2 Rigid Body Reorient Algo 2 Wiki_Logo
85 3-(methylfsulfanyl)-N-methylpropanamide 2 Rigid Body Reorient Algo 2 Wiki_Logo
86 3-(methylfsulfanyl)-N-methylpropanamide 2 Rigid Body Reorient Algo 2 Wiki_Logo
87 N-[2-(methylsulfanyl)ethyl]acetamide 2 Rigid Body Reorient Algo 2 Wiki_Logo
88 N-[2-(methylsulfanyl)ethyl]acetamide 2 Rigid Body Reorient Algo 2 Wiki_Logo
89 dimethyl sulfide 1 Rigid Body Reorient Algo 2 Wiki_Logo
90 1-(methylsulfanyl)acetone 1 Rigid Body Reorient Algo 2 Wiki_Logo
91 ethane 1 Rigid Body Reorient Algo 2 Wiki_Logo
92 ethane 1 Rigid Body Reorient Algo 2 Wiki_Logo
93 propane 1 Rigid Body Reorient Algo 2 Wiki_Logo
94 propane 1 Rigid Body Reorient Algo 2 Wiki_Logo
95 2-methylpropane 1 Rigid Body Reorient Algo 2 Wiki_Logo
96 butane 1 Rigid Body Reorient Algo 2 Wiki_Logo
97 2,3,3-trimethylbutane 1 Rigid Body Reorient Algo 2 Wiki_Logo
98 but-1-ene 1 Rigid Body Reorient Algo 2 Wiki_Logo
99 2-ethyl-4,6-dimethylaniline 1 Rigid Body Reorient Algo 4 Wiki_Logo
100 2-ethyl-4-methyl-6-propylanilinate 1 Rigid Body Reorient Algo 4 Wiki_Logo
101 2-ethyl-4,6-dimethylphenol 1 Rigid Body Reorient Algo 4 Wiki_Logo
102 2-ethyl-4-methyl-6-propylphenolate 1 Rigid Body Reorient Algo 4 Wiki_Logo
103 2-ethyl-4,6-dimethylbenzenethiol 1 Rigid Body Reorient Algo 4 Wiki_Logo
104 2-ethyl-4-methyl-6-propylthiophenolate 1 Rigid Body Reorient Algo 4 Wiki_Logo
105 2-ethyl-4,6-dimethylaniline 1 Rigid Body Reorient Algo 4 Wiki_Logo
106 2-ethyl-4-methyl-6-propylanilinate 1 Rigid Body Reorient Algo 4 Wiki_Logo
107 2-ethyl-4,6-dimethylphenol 1 Rigid Body Reorient Algo 4 Wiki_Logo
108 2-ethyl-4-methyl-6-propylphenolate 1 Rigid Body Reorient Algo 4 Wiki_Logo
109 2-ethyl-4,6-dimethylbenzenethiol 1 Rigid Body Reorient Algo 4 Wiki_Logo
110 2-ethyl-4-methyl-6-propylthiophenolate 1 Rigid Body Reorient Algo 4 Wiki_Logo



Information regarding Quantum Calculations

Geometry optimization

Program 1 Firefly

Theory level 1 HF

More information 1 OPTTOL=1.0E-06

Basis set 1 6-31G**

Molecular electrostatic potential computation

Program 2 Firefly

Theory level 2 HF

More information 2 -

Basis set 2 6-31G*

Algorithm CONNOLLY SURFACE


Information about the charge fit

Program RESP

Number of stage(s) 2

input of stage 1

input of stage 2



Files the author of the project wishes to provide...

A script to convert Tripos mol2 file(s) into LEaP OFF library(ies) (for AMBER)...
A script to convert Tripos mol2 file(s) into RTF or PSF library(ies) (for CHARMM)...
A file to provide new force field parameters compatible with the Tripos mol2 file(s)...
A file (choice made by the author) to provide more information about the project...
A file (choice made by the author) to provide more information about the project...

Download the whole project...



Valid XHTML 1.0 Strict CSS Valide !

Internet page © 2006-2021. All rights reserved.
Université de Picardie Jules Verne - Sanford Burnham Prebys Medical Discovery Institute.
R.E.DD.B. projects free