How to efficiently use R.E.D. Server Development/PyRED?

PyRED efficient use - Efficient PyRED workflow

Save CPU time by splitting a complex job into smaller ones, and progressing step-by-step to fix issues.

Questions?

Contact_at_q4md-forcefieldtools.org

Step 1: get the QM optimized geometries for each conformation/molecule

Use: OPT Calc = ON, Freq Calc = ON, MEPCHR Calc = OFF

Step 2: get the QM MEP, atom types and charges for the multiple molecule job

Use: OPT Calc = OFF, Freq Calc = OFF, MEPCHR Calc = ON

Step 3: check and correct the multiple molecule job

Use: Re Fit = ON (other keywords do not matter)

Step 4: provide unknown FF parameters

Use: Re Fit = ON (other keywords do not matter)

A 2 molecule job involving intra/inter-molecular charge constraints is demonstrated in this tutorial:

- Molecule 1 contains 2 conformations
- Molecule 2 contains a single conformation

Step 1: get the QM optimized geometries for each conformation/molecule

- QM geometry optimization is a bottleneck in FF generation, as it requires long computation times.
- Optimized geometries can also be selected after a conformational search...
- **Prepare PDB input files with chemical elements**: as PyRED handles all the elements of the periodic table, the chemical element columns (right justified columns 77-78; 1 or 2 characters) are used to differentiate atoms with ambiguous atom names.

See the 'readme.txt' file:

https://upiv.q4md-forcefieldtools.org/REDServer-Development/Documentation/readme.txt

Prepare 3 jobs and run 3 single conformation single molecule jobs

- Use OPT_Calc = ON, Freq_Calc = ON, MEPCHR_Calc = OFF in the 'System.config' file for each job (use OPT_Calc = ON2 if the molecule is large).
- Define an informative title for each molecule, and specify the total charge value and spin multiplicity values (if different from 0 and 1, respectively) in the 'Project.config' file.
- Use MOLECULE1-ATMREORDR = ON in the 'Project.config' file to get a friendly atom order for atom indexing and RESP input files for each job.

Create the 3 archive files

```
# Conformation 1 molecule 1
tar -jcf job1-1.tbz job1-1/Mol_red1.pdb job1-1/*.config
# Conformation 2 molecule 1
tar -jcf job1-2.tbz job1-2/Mol_red1.pdb job1-2/*.config
# Conformation 1 molecule 2
tar -jcf job1-3.tbz job1-3/Mol red1.pdb job1-3/*.config
```

Remark: Each 'System.config' and 'Project.config' keyword can also be added to the PDB input file allowing the direct upload of this file to R.E.D.Server Development using the 'REMARK SYSTEMCFG' and 'REMARK PROJECTCFG' keywords, respectively (see the 'readme.txt' file).

Upload the 3 archive files separately

- Run the 'Px1', 'Px2' and 'Px3' jobs, download the corresponding data on a local machine and study the results.
- Redo the jobs until all the geometry optimizations are successful and the generated conformations are those needed.

Results

The atoms of each QM optimized conformation/molecule are reordered, duplicated atom names are corrected, the total charge and spin multiplicity are validated, and the conformation(s) with imaginary frequency(ies) can be identified and/or discarded.

Step 2: get the QM MEP, atom types and charges for the multiple molecule job

Prepare the multiple molecule job

The job involves the 2 conformations of molecule 1 and the single conformation of molecule 2: mkdir job1-2mols

```
cp Px1/Data-R.E.D.Server/Mol_m1/Mol_m1-c1-qmra.pdb() job1-2mols/Mol_red1.pdb cp Px1/Data-R.E.D.Server/Mol_m1/JOB1-gau_m1-1.out() job1-2mols/Mol_red1-1.log cat Px2/Data-R.E.D.Server/Mol_m1/Mol_m1-c1-qmra.pdb() >> job1-2mols/Mol_red1-1.log px2/Data-R.E.D.Server/Mol_m1/JOB1-gau_m1-1.out() job1-2mols/Mol_red1-2.log warning: the atom orders in the 2 conformations of molecule 1 have to be identical in the PDB and QM files...
```

```
cp Px3/Data-R.E.D.Server/Mol_m1/Mol_m1-c1-qmra.pdb<sup>(*)</sup> job1-2mols/Mol_red2.pdb cp Px3/Data-R.E.D.Server/Mol_m1/JOB1-gau_m1-1.out<sup>(*,*)</sup> job1-2mols/Mol_red2-1.log (*) Atoms are reordered in PyRED outputs.

(**) Use 'JOB1-gau m1-1.out' for Gaussian, and 'JOB1-gam m1-1.log' for GAMESS/FIREFLY.
```

In the 'job1-2mols/System.config' file

• Redefine 'OPT_Calc = OFF', 'Freq_Calc = OFF', 'MEPCHR_Calc = ON'.

In the 'job1-2mols/Project.config' file

- Redefine each molecule title, total charge and spin multiplicity values, incrementing the keywords as a function of the molecule indexes
- Add the intra/inter-molecular charge equivalencing (atom indexes are easily identified with the new atom order using the available JSmol applets with 'Atom labels = Index')

Create the new archive file

```
tar -jcf job1-2mols.tbz job1-2mols/*
```

Upload the archive file

• Run the 'Px4' job, download the corresponding data on a local machine and study the results.

Results

QM data (optimized geometries and MEP) are generated in a multiple molecule job.

Step 3: check and correct the multiple molecule job

Prepare the data to correct the 'Px4' job

Is charge equivalencing correctly carried out in the multiple molecule fit?

Indeed intra/inter-mcc may affect charge equivalencing in some cases

- Look at the force field libraries in the 'Px4/Data-R.E.D. Server/Mol MM' directory
- If needed and to fine tune the multiple molecule charge fit call charge equivalencing rules used the single molecule fits (keywords MOLECULE1/2-CHEMEQSM) defined in the file:

```
Px4/Data-R.E.D.Server/Data-Default-Proj/Project-out.config

and force their use in the multiple molecule fit:

cd Data-R.E.D.Server/Data-Default-Proj/
grep CHEMEQSM ./Project-out.config >> ../../../job2-2mols/Project.config

sed -i '/CHEMEQSM/CHEMEQMM/' ../../job2-2mols/Project.config
```

Are the generated atom types correct and does a new atom type has to be created?

PyRED may show inaccuracies with the 'CD' and 'CM' atom types

- Look at the force field libraries in the 'Px4/Data-R.E.D.Server/Mol_MM' directory
- Start from the atom type list (keywords MOLECULE1/2-ATMTYPE) defined in the file: Px4/Data-R.E.D.Server/Data-Default-Proj/Project-out.config

```
grep -- "-ATMTYPE" ./Project-out.config >> ../../../job2-2mols/Project.config • Then adapt the ATMTYPE list of molecules 1/2 to the choices made in the 'job2-2mols/Project.config' file
```

Use the Re_Fit mode to avoid re-running QM MEP computation

```
Add 'Re_Fit = On' in the 'System.config' file echo 'Re_Fit = On' >> ../../job2-2mols/System.config
```

Create a new archive file

It contains the updated 'System.config' and 'Project.config' files and the QM data from the previous job:

```
cd ../../..
tar -jcf job2-2mols.tbz job2-2mols/*
Need a better compression ratio for the archive file? (maximum size for the uploaded archive file: 90 MB!)
tar -cf job2-2mols.tar job2-2mols/*
7za a -mmt=on -mx=9 job2-2mols.tar.7z job2-2mols.tar
```

Upload the archive file

Run the 'P \times 5' job, download the corresponding data on a local machine and study the results. ('P \times 5' should last a few minutes on the cluster)

Results

The multiple molecule job contains corrected charge values and atom types.

Step 4: add unknown FF parameters

Is there any unknown/missing FF parameters in job 'P5x'?

- Look at the FF parameters in the 'Px5/Data-R.E.D.Server/Data-Default-Proj/' directory.
- FF parameters are listed in 3 files:
 - 'frcmod.known', 'frcmod.unknown' and 'frcmod.correspondence'.
- These files are based on the atom types defined in the previous step.
- Known FF parameters are listed in the 'frcmod.known' and 'frcmod.correspondence' files.
- Unknown FF parameters are listed in the 'fromod.unknown' file.

Prepare a last job if unknown FF parameters are found

The 'frcmod.user' input file must contain the unknown FF parameters listed in the 'frcmod.unknown' file from the previous job; for more information see: https://upjv.q4md-forcefieldtools.org/REDServer-Development/Documentation/ForceFieldParameters-LEaPScript.html https://ambermd.org/FileFormats.php

Keep 'Re Fit = On' in the 'System.config' file to avoid re-running QM MEP computation

Create a new archive file

```
tar -jcf job3-2mols.tbz job3-2mols/*
Need a better compression ratio for the archive file? (maximum size for the uploaded archive file: 90 MB!)
tar -cf job2-2mols.tar job2-2mols/*
7za a -mmt=on -mx=9 job2-2mols.tar.7z job2-2mols.tar
```

Upload the archive file

Run the 'P \times 6' job, download the corresponding data on a local machine and study the results. ('P \times 6' should last a few minutes on the cluster)

Results

The multiple molecule job contain all the FF parameters based on the atom types defined in the previous step.

One is ready the edit/load the 'leapro.q4mdfft' script available in the 'Px6/Data-R.E.D.Server/Data-Default-Proj/' directory in the LEaP program from AmberTools...